ANNEXURE - I <u>ENGINEERING MATHEMATICS</u> (Common for all branches of Diploma in Engineering)

Unit-I:

Matrices:Matrices of 3rd order: Types of matrices-Algebra of matrices-Transpose of a matrix-Symmetric, skew symmetric matrices-Minor, cofactor of an element-Determinant of a square matrix-Properties-Laplace's expansion-singular and non singular matrices-Adjoint and multiplicative inverse of a square matrix-System of linear equations in 3 variables-Solutions by Crammer's rule, Matrix inversion method.

<u>Partial Fractions:</u> Resolving a given rational function into partial fractions.

<u>Unit –II:</u>

Trigonometry: Properties of Trigonometric functions – Ratios of Compound angles, multiple angles, sub multiple angles – Transformations of Products into sum or differenceand vice versa – Simple trigonometric equations – Properties of triangles – Inverse Trigonometric functions.

Complex Numbers: Modulus and conjugate, arithmetic operations on complex number— Modulus-Amplitude form (Polar form)-Euler form (exponential form)-Properties- De Movire's Theorem and its applications.

<u>Unit – III :</u> Analytical Geometry

Circles-Equation given center and radius-given ends of diameter-General equation-finding center and radius. Standard forms of equations of Parabola, Ellipse and Hyperbola – simple properties.

<u>Unit – IV :</u> Differentiation and its Applications

Functions and limits – Standard limits – Differentiation from the First Principles – Differentiation of sum, product, quotient of functions, function of function, trigonometric, inverse trigonometric, exponential, logarithmic, Hyperbolic functions, implicit, explicit and parametric functions – Derivative of a function with respect to another function-Second order derivatives –Geometrical applications of the derivative (angle between curves, tangent and normal) – Increasing and decreasing functions – Maxima and Minima (single variable functions) using second order derivative only – Derivative as rate measure -Errors and approximations - Partial Differentiation – Partial derivatives up to second order – Euler's theorem.

<u>Unit – V :</u> Integration and Its Applications

Indefinite Integral – Standard forms – Integration by decomposition of the integrand of trigonometric, algebraic, exponential, logarithmic and Hyperbolic functions – Integration by substitution – Integration of reducible and irreducible quadratic factors – Integration by parts – Definite Integrals and properties, Definite Integral as the limit of a sum – Application of Integration to find areas under plane curves and volumes of Solids of revolution – Mean and RMS value.

<u>Unit – VI:</u> Differential Equations

Definition of a differential equation-order and degree of a differential equation- formation of

differential equations-solution of differential equation of the type first order, first degree, variable-separable, homogeneous equations, exact, linear differential equation of the form dy/dx + Py = Q, Bernoulli's equation, nth order linear differential equation with constant

coefficients both homogeneous and non homogeneous and finding the Particular Integrals for the functions e^{ax} , x^m , Sin ax, Cos ax.

ANNEXURE - II FOR DIPLOMA HOLDERS MATHEMATICS (Common Syllabus)

Number of Questions to be Set Unit Wise (Total 50)

UNIT NO	TOPICS	MARKS
I	Matrices	05
	Partial Fractions	02
п	Trigonometry	10
	Complex numbers	02
III	Analytical geometry	06
IV	Differentiation and its applications	10
V	Integration and its applications	08
VI	Differential equations	07
TOTAL		50

ANNEXURE - III FOR DIPLOMA HOLDERS MODEL QUESTIONS FOR MATHEMATICS

1.	The maximum value of $5+8\cos\theta+6\sin\theta$ is
	1) 25 2) 10
	2) 19 3) 15
	4) 5
_	
2.	The value of $Cos10^{\circ}Cos50^{\circ}Cos70^{\circ}$ is
	1) $\frac{\sqrt{3}}{4}$
	2) $\frac{\sqrt{3}}{2}$
	$\sqrt{3}$
	$\frac{3}{6}$
	4) $\frac{\sqrt{3}}{8}$
2	If $S_{2} = 20 = \frac{-2}{2}$ then the summary backetion θ is
3.	If $\sec 2\theta = \frac{1}{\sqrt{3}}$ then the general solution θ is
	$1) 2n\pi \pm \frac{5\pi}{6}$
	$2) n\pi \pm \frac{5\pi}{6}$
	$3) n\pi \pm \frac{5\pi}{12}$
	$4) 2n\pi \pm \frac{\pi}{6}$
4.	The eccentricity of the ellipse $3x^2 + 2y^2 = 6$ is
	1) $\frac{1}{2}$
	$\frac{3}{1}$
	2) $\sqrt{3}$
	3) $\frac{1}{4}$
	4) $\frac{1}{2}$
5.	$\int_0^1 \frac{xe^x}{(1+x)^2} dx =$
	1) $\frac{e-2}{-2}$
	2) e-2
	-, - <u>-</u> e-1
	3) $\frac{2}{2}$
	4) e-1